DRI and Scripps Oceanography receive $3 million NOAA grant to help decision makers prepare for extreme events

Reno, NV (Friday, November 17, 2017): A climate research program led by scientists at the Desert Research Institute (DRI) and the Scripps Institution of Oceanography at the University of California, San Diego has received funding from the National Oceanic and Atmospheric Administration (NOAA) to improve the ability of decision makers in California and Nevada to prepare and plan for extreme weather and climate events such as drought, wildfire, heatwaves, and sea level rise.

NOAA’s Regional Integrated Sciences and Assessments (RISA) Program granted a total of $7.5 million in competitive research awards to four institutions in Arizona, New Mexico, California, and Nevada.

The California-Nevada Applications Program (CNAP), a DRI and Scripps collaboration that has spent more than 15 years understanding climate risks and providing cutting-edge climate science to stakeholders in the region, will receive $3 million over the next five years. CNAP has been part of the RISA program since 1999.

“We (CNAP) do both research and work as a boundary organization,” explains Tamara Wall, Ph.D., co-director of CNAP and deputy director of the Western Regional Climate Center at DRI. “We work with the people who produce climate information and the people who use it on a daily basis. Our online data tools, observational data, and publications make the climate information pipeline both wider and shorter, thereby making the climate data critical to on-the-ground decisions more accessible and easier to understand.”

With the new grant, the CNAP program will focus on climate-driven impacts related to water resources, natural resources, and coastal resources. This includes wildfire warnings and health impacts, sea-level rise and flooding, precipitation events in the Great Basin, climate information for underserved farmers, communication and coordination of the California/Nevada Drought Early Warning System, and research projects related to extreme precipitation, seasonal to sub-seasonal forecasting, and incorporation of new evaporative demand data into water management in Southern Nevada.

“The RISA program helps bridge the gap by partnering scientists and key decision makers,” said Dan Cayan, research meteorologist at Scripps and co-director of CNAP. “The goal is to have informed stakeholders who can use the latest research to anticipate, prepare for, and respond to climate impacts, and for our researchers to be able to directly support on-the-ground decisions to improve climate resiliency and inform policy.”

The new RISA funding will allow CNAP staff to work closely with communities, resource managers, land planners, public agencies, nongovernmental organizations, and the private sector to advance new research on how weather and climate will impact the environment, economy, and society. These teams will also develop innovative ways to integrate climate information into decision-making.

For more than 20 years, the RISA Program has produced actionable weather and climate research, helping to reduce economic damages that Americans face due to droughts, floods, forest fires, vector-borne diseases, and a host of other extreme weather impacts. A network of 11 RISA teams across the country works hand-in-hand with stakeholders and decision makers across the United States to ensure that research and information is responsive and able to effectively support responses to extreme events. The interagency National Integrated Drought Information System (NIDIS) co-funds drought components of these awards.

CNAP draws together climate and hydrologic expertise at Scripps with physical and social scientists from DRI, as well as other research institutions in California and Nevada. CNAP research teams have developed collaborations with key decision makers across both states. CNAP has worked closely with Washoe County Emergency Management office, California Energy Commission and has taken a leading role in the three completed and now fourth ongoing, California Climate Assessments. In addition, the team has collaborated with California Department of Water Resources on several of their climate focused efforts and plays a key role in supporting the California Nevada Drought Early Warning System (CA/NV DEWS).

CNAP teams also work closely with fire agencies throughout the West to help officials better understand relationships between climate and fire, build institutional knowledge of fire fighters, and provide tools and information to help inform fire agency decisions.

In Nevada, CNAP teams work with Great Basin tribes to understand barriers to climate data and has helped develop a resilience plan with Washoe County. Most recently CNAP is working with Southern Nevada Water Authority, Science Climate Alliance – South Coast, and the Bureau of Land Management (BLM) on climate related projects. RISA is a program in the Climate Program Office, within NOAA’s Office of Oceanic and Atmospheric Research.

More information about the RISA program and teams is available at http://cpo.noaa.gov/Meet-the-Divisions/Climate-and-Societal-Interactions/RISA/RISA-Teams.

Learn more about CNPA at – https://scripps.ucsd.edu/programs/cnap/cnap-program/

###

The Desert Research Institute (DRI) is a recognized world leader in investigating the effects of natural and human-induced environmental change and advancing technologies aimed at assessing a changing planet. For more than 50 years DRI research faculty, students, and staff have applied scientific understanding to support the effective management of natural resources while meeting Nevada’s needs for economic diversification and science-based educational opportunities. With campuses in Reno and Las Vegas, DRI serves as the non-profit environmental research arm of the Nevada System of Higher Education. For more information, please visit www.dri.edu.

Scripps Institution of Oceanography at the University of California San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at www.scripps.ucsd.edu and follow us at Facebook, Twitter, and Instagram.

At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. Learn more at www.ucsd.edu.

NOAA’s Climate Program Office helps improve understanding of climate variability and change in order to enhance society’s ability to plan and respond. NOAA provides science, data, and information that Americans want and need to understand how climate conditions are changing. Without NOAA’s long-term climate observing, monitoring, research, and modeling capabilities we couldn’t quantify where and how climate conditions have changed, nor could we predict where and how they’re likely to change.

You May Also Like…

Regional, Racial, and Economic Disparities in Cancer Risk from Air Pollution Exposure Persist, But Improving, New Research Suggests 

Regional, Racial, and Economic Disparities in Cancer Risk from Air Pollution Exposure Persist, But Improving, New Research Suggests 

Researchers from DRI and UNR teamed up for this new study, published October in Environmental Science & Technology. Using sociodemographic data from the U.S. Census Bureau and public health and air pollution information from the EPA between 2011 and 2019, the study identified higher estimated cancer risk tied to air toxics in urban communities, those with lower incomes, and those with higher proportions of racial minorities. 

Native Climate Reporter Team Presents, Listens, and Learns at Indigenous Climate Conference in Alaska

Native Climate Reporter Team Presents, Listens, and Learns at Indigenous Climate Conference in Alaska

Along Alaska’s western coastline, 400 miles from the nearest road system, villagers from the Indigenous community of Newtok were scheduled for permanent evacuation in mid-October due to the irreversible threat of rising seas. The story, recounted by Newtok resident Della Carl in September at the National Indigenous Climate Conference in Anchorage, Alaska, embedded itself deep in the hearts and minds of each member of the audience, making it clear not just that sea level rise is happening, but why it matters. Such is the power of a well-told story.

DRI Recruiting Fallon Community Members  for Free Well Water Quality Testing 

DRI Recruiting Fallon Community Members  for Free Well Water Quality Testing 

DRI scientists are recruiting fifteen Fallon residents with private wells to participate in a water quality study. All fifteen study participants will receive free water quality results, and a subset of the well owners will receive water filtration systems. The research will be used to identify the spatial extent and potential sources of contaminants such as pesticides, microplastics, and flame retardants and quantify the efficacy of treatment systems to reduce concentrations in drinking water.

Share This