New DRI projects for 2020 include luminescence dating, fracking, and groundwater

Three new research projects sponsored by the Desert Research Institute in 2020 will explore new methods in luminescence dating, groundwater contamination around fracking operations, and the movement of groundwater through rocks and soils.

DRI awards funding to several new faculty and staff projects each year through its Institute Project Assignment (IPA) competition. Winners of the IPA competition receive a research grant from DRI to pursue a topic that interests them and develop ideas that can ultimately be turned into externally funded research projects.

Winners of this year’s IPA competition are Christina Neudorf, Zhiqiang Fan, and Lazaro Perez. Their projects are as follows:

Christina Neudorf: A pilot project to explore the feasibility of dating rock surfaces and carbonate deposits using luminescence dating

Luminescence dating, which uses light emitted by minerals to date events in the past, is a technique most commonly applied to silt or sand samples. Christina Neudorf, manager of the DRI Luminescence Lab (DRILL), will explore new methods in luminescence dating that could be used to date rock surfaces and carbonate deposits such as travertine and tufa that are common in Nevada. Her research aims to diversify the luminescence dating approaches applied at DRILL, and to expand DRI’s capabilities in providing chronologies for past climate change, early human evolution and dispersal, and landscape evolution in response to climate change, tectonics and changing sea level.

Zhiqiang Fan: Hydraulic fracturing induced fault reactivation and groundwater contamination

Hydraulic fracturing, or “fracking,” injects fluid at high pressure into deep-rock formations, creating fractures in the rock through which natural gas can be extracted. Environmental impacts include risk of groundwater contamination. Zhiqiang Fan, a Postdoctoral Fellow in geomechanics with the Division of Hydrologic Sciences, will investigate the potential for flow of fracking fluids from shale formations into groundwater aquifers, including the possibility for accidental reactivation of faults near injection wells. His work aims to improve fracking design and execution to produce gas in a more economically viable and environmentally sound manner.

Lazaro Perez: Reactive transport in porous media

Reactive transport modeling is an important tool for understanding the movement and mixing of fluids such as groundwater as it travels through various types of rocks and soils in an aquifer. Lazaro Perez, a Postdoctoral Fellow with the Division of Hydrologic Sciences, will work with Rishi Parashar (DHS) to develop numerical models and conduct simulations of fluid-fluid reactions as they occur in porous media such as different types of rocks. Using the methodology that Perez developed during his Ph.D. work in Spain, they hope to learn about the fluid-fluid reactions that occur as water moves through heterogeneous porous media. An improved understanding of the underlying processes involved in fluid-fluid mixing can also be applied to other scientific disciplines, such as how fluids mix inside of the human body.

You May Also Like…

What We Know About Wildfire Risk and Prevention 

What We Know About Wildfire Risk and Prevention 

DRI scientists conduct a wide range of research on wildfire related topics to help policymakers, fire managers, and community members navigate challenges to public safety and health. In this Q&A, a selection of our scientists answer some of the most pressing questions about the environmental conditions that lead to the most devastating blazes and offer previews into some of their most relevant research.  

Volunteer Scientists Validate Rain and Snow Estimates

Volunteer Scientists Validate Rain and Snow Estimates

DRI scientists Guo Yu, Meghan Collins, Monica Arienzo, and Anne Heggli co-authored a new study that examines how Mountain Rain or Snow is helping improve weather forecasting models. The citizen science project collects observations of precipitation from community volunteers across the country to further scientific understanding of the environmental variables impacting where precipitation falls as either rain or snow. This information is critical for informing avalanche forecasting, road safety, and water resources management.

DRI Internships Offer Nevada Students Experience with Research and Insight into STEM Careers

DRI Internships Offer Nevada Students Experience with Research and Insight into STEM Careers

This summer and fall, DRI brought twelve students from Nevada’s community and state colleges to the Las Vegas and Reno campuses for a paid, immersive research experience. Over the course of the 16-week program, students worked under the mentorship of DRI faculty members to learn about the process of using scientific research to solve real-world problems. This unique internship program welcomes all students, not only those pursuing majors in science, who are in their first or second year of enrollment at local state and community colleges.

Share This