Portable In-Situ Wind ERosion Lab: PI-SWERL

The PI-SWERL, which stands for Portable In-Situ Wind ERosion Lab, has been in development at DRI since 2000. The PI-SWERL concept was motivated by the need for a portable device to test and measure the potential for wind erosion and dust emissions from real-world surfaces. Traditional wind tunnels used for this purpose required long setup times and in some cases a crew of several people to operate. The goal in developing the PI-SWERL was to provide a turn-key device that was easy to move, required minimal setup, and could be operated by one person. A prototype developed in 2000 and tested alongside the University of Guelph large, field wind tunnel provided early indication of the feasibility of the PI-SWERL concept. Since then several models have been used in numerous field investigations. The latest miniature version (MPS-2a) has been a workhorse instrument for DRI since 2005 and its design has remained essentially constant. In 2007, DRI licensed the PI-SWERL technology to Dust-Quant LLC to make it commercially available to users worldwide.

The PI-SWERL is contained in an open-bottomed, cylindrical chamber operated by a direct-current motor that spins a metal, annular ring about 2.5 in. above and parallel to the soil surface. Principles of fluid mechanics allow simulation of high winds that produce dust storms. The spinning ring creates known wind shear, lofting soil and dust particles and passing them through particulate monitors. The PI-SWERL electronically measures the number and size of entrained particles over the duration of a test cycle, typically under 10 minutes. By controlling the speed of the ring to simulate varying wind speeds, the potential for a soil surface to produce PM10 dust emissions can be determined under a range of simulated wind conditions.

PI-SWERL allows for elucidation of effects of specific road characteristics with respect to dust emissions. It can be used to assess the effect of pavement properties on dust emissions, potential for windblown dust on unpaved roads, effectiveness of surface treatments on reducing emissions, emissions from road shoulders, and potential for aerodynamically driven emissions for vehicles traveling at different speeds.

The PI-SWERL (US Patent 7,155,966) measures the amount of dust emitted from a surface when a known amount of wind shear is applied.  A flat annular blade inside the chamber rotates at prescribed speeds to simulate different amounts of surface shear stress.  Although it uses a different principle of operation, it can be thought of as analogous to a miniature wind tunnel.

PI-SWERL and Wind Tunnel Simulations

PI-SWERL and Wind Tunnel Simulations

The PI-SWERL was collocated with the University of Guelph large field wind tunnel at seventeen sites in the Mojave desert, spanning graveled roads to silty playas (Sweeney, et. al., 2008). Agreement between the two methods of estimating dust emissions was good with a correlation coefficient of 0.76 and a nearly 1:1 slope.

CONTACT

Vic Etyemezian, Ph.D.
Research Professor
702.862.5569
Vic.Etyemezian@dri.edu 

George Nikolich
702.862.5413
George.Nikolich@dri.edu  

LOCATION

Desert Research Institute
755 East Flamingo Road
Las Vegas, NV 89119

DIVISION

Atmospheric Sciences